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The flow of a liquid with a free surface over a weir in a channel is calculated 
numerically for thin weirs in channels of various depths, and for broad-crested weirs 
in channels of infinite depth. The results show that the upstream velocity, as well 
as the entire flow, are determined by the height of the free surface far upstream and 
by the geometry of the weir and channel, in agreement with observation. The 
discharge coefficient is computed for a thin weir, and a formula for i t  is given that 
applies when the height of the weir is large compared to the height of the upstream 
free surface above the top of the weir. The coefficients in this formula are close to 
those found empirically. 

1. Introduction 
The flux or discharge & of fluid along a channel is the product of the fluid mean 

velocity U and cross-sectional area A @ ) ,  which depends upon the free-surface level 
H: 

Both U and H must be known to determine & from (1.1). However observation shows 
that in a channel partially obstructed by a weir, & is determined by H alone. Then & 
can be found without measuring U, which is one of the r e w n s  for using weim 
(Ackers et al. 1978). 

This observation implies that although U and H are independent in an unob- 
structed channel, they are not independent in a channel containing a weir. Instead 
U = U(H) is a function of H and of the size and shape of the weir. Up to the present, 
this rather surprising fact has not been treated hydrodynamically. 

To analyse it, we shall calculate numerically the flows over thin two-dimensional 
weirs in channels of different depths, and over broad-crested two-dimensional weirs 
in channels of infinite depth. This requires solving free-surface problems in the 
presence of gravity. For this purpose we aasume that the fluid is incompressible and 
inviscid, and that each flow is irrotational, steady and two-dimensional. We also 
assume that there are no surface waves. 

For a thin weir at each surface height H we find that there is a solution for only 
one value of U,  which depends upon H and upon the height W of the weir. This 
confirms the empirical result mentioned above. We determine the flux &, the 
discharge coefficient C, and the shape of the free surface for this solution. We also 
obtain a formula for C when H /  W is small, where H is measured from the top of the 
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weir. This formula is of the form used in practice, and the computed coefficients in 
it are close to the empirical ones (Ackers et al. 1978). 

For a broad-crested weir of length L and height W = m, we find that there is a 
unique flow for given values of H and L. We determine &, C and the free surface for 
two values of H / L .  

In  92 we define C and introduce the form of the equation for it. Then in 93 we 
consider a thin weir in a channel of infinite depth. After formulating the flow problem 
mathematically, we present our numerical procedure for solving it and display some 
of the numerical results. In  94 we treat a thin weir in a channel of finite depth while 
in 95 we treat broad-crested weirs in a channel of infinite depth. Finally in 96 we 
discuss a related free-surface flow that can be analysed explicitly, and discuss some 
of the relevant literature. 

2. Discharge coefficient 
Figure 1 (a) shows a side view of a channel with a thin weir, and figure 1 (b) shows 

a cross-section of the channel at the weir. The height H of the free surface far upstream 
and the depth W of the bottom are measured from some point on the upper edge of 
the weir, as is shown in figure 1 (a). The cross-sectional area A ( H )  of the channel, and 
the area a ( H )  of the region above the weir up to the level H ,  are shown in figure 1 (b). 

In  terms of these quantities and the acceleration due to gravity g, we define the 
dimensionless discharge coefficient C by 

& = C(gH):a(H).  (2.1) 

The fact that the flow is determined by H means that C is a function only of H and 
of the geometry of the weir and the channel. Since C is dimensionless, we shall write 
it as a function of the dimensionless ratio H /  W, C = C ( H / W ) .  It also depends upon 
other dimensionless geometrical parameters. 

We assume that C is regular for H /  W small, so that it has the form 

For flows over two-dimensional thin weirs this assumption is confirmed by our 
numerical results, which are presented in $93 and 4. The results also determine the 
coefficients C(0) and C'(0) for those particular weirs. 

Let us specialize these formulas to a weir with a rectangular opening of width b, 
for which a ( H )  = bH. Then (2.1) and (2.2) yield 

Q=gfHtb  c(o)+c'(o)-+o - . { W [(Hw)pI) 
For a weir with a V-notch of angle 8 , a ( H )  = H8 t a n 9  and we get instead 

Results of the forms (2.3) and (2.4) are used in practice (Ackers et al. 1978). They 
are derived by dimensional analysis, hydraulic approximations and fitting to 
experimental data. Corrections for viscous and surface-tension effects are often 
included. 

By combining (1.1) and (2.1), we can determine the velocity U .  From it we find 
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FIGURE 1. (a) Side view of a channel with a thin weir. (21) Cross-section of a rectangular channel 
of width B at the weir, which has a rectangular opening of width b, at height W above the bottom. 
The water depth far upstream is W + H. 

that the Froude number F = U[g(H+ W)]+ of the flow in the channel, based upon 
the total depth, is 

= A(H) (">{ w C(0) + [ C ' ( O )  -P(O)] ;+ 0 [(>I}. 
For a weir with a rectangular opening of width b in a rectangular channel of width 

B, we have a(H) = bH, A(H) = B(H+ W) and (2.5) becomes 

For a thin weir, the only other geometrical ratios upon which C(0) and C'(0) depend 
in this case are b/B and the lateral position of the opening. This result shows that 
F is small, of order (H/W)i ,  when H/W is small, 80 then the flow is extremely 
subcritical. When b = B the flow is two-dimensional and then the coefficients are 
constants. We shall determine them in $83 and 4. 

10-2 
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3. Thin weir in infinitely deep channel 
Let us consider a thin weir, such as that shown in figure 1 (a), in a channel of infinite 

depth, so that W = 00. Let the channel be rectangular with width B = b,  so that the 
opening above the weir extends completely across the channel. Then the flow is 
two-dimensional. We seek a flow that becomes a falling jet with two free surfaces after 
it crosses the weir. Thus the flow appears as in figure 1 (a) with the bottom removed 
to infinity, and with the jet falling to infinity. 

We introduce Cartesian coordinates with the z-axis directed vertically downwards 
through the separation point 8, and with the asymptote to the upper free surface 
as the y-axis (see figure la). Gravity acts in the 2-direction. As g-+- 00, the velocity 
approaches zero. As y++ 00 the flow approaches the thin-jet solutions of Keller & 
Weitz (1957) and Keller & Geer (1973). 

Let the potential function be q5 and t& stream function be $. Without loss of 
generality we choose $ = 0 on the lower free surface and 9 = 0 at the separation point 
S. Let Q be the value of $ on the upper free surface. On the two free surfaces the 

~~ 

Bernoulli equation yields 
t(Vq5)"gz = 0. 

We introduce dimensionless variables by taking (Qe/g)! as the unit length and (Qg)i 
as the unit velocity. In  these new variables (3.1) becomes 

(Vq5)2-22 = I$= 1 
O ""'I$ = o,$$ > 0. 

The plane of the dimensionless potential f = q5 + i$ is shown in figure 2. 
Let the complex velocity be f = u - iv. Here u and v are the x- and y-components 

of the vector velocity. As f +- 00, we require that there be no waves, so the velocity 
5 vanishes like ef. Asf++ 00, the velocity 5 increases likef! (Keller & Weitz 1957). 
Thus we have 5-ef & s f + - - ,  (3.3) 

C-f! asf++oo. (3.4) 

The problem is to find C as an analytic function off = q5 + i$ in the strip 0 < $ < 1, 
satisfying (3.2)-(3.4) and the kinematic condition 

v = O  on$=O,q5<0. (3.5) 

We define the new variable t by the relation 

1 ( t + l ) Z  
7r 2(t2+1)' 

f =  -1n- 

The transformation (3.6) maps the flow domain into the interior of the unit circle 
in the t-plane so that the vertical wall goes onto the real diameter and the free surface 
goes onto that portion of the circumference lying in the upper half of the t-plane (see 
figure 3). 

Following de Boor (1961) we defme the function Q(t)  by the relation 

C = - ( t +  1) [-lnc(I +t2)$ en(t). (3.7) 

Here c is a real constant between 0 and t .  We shall choose c = 0.2. It can be checked 
eclsily that the expression (3.7) satisfies the conditions (3.3) and (3.4). The function 
Q(t)  is analytic for It1 < 1 and continuous for It1 < 1. The kinematic condition (3.5) 
implies that the expansion of Q ( t )  in powers o f t  has real coefficients. With this 
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FIQURE 2. The complex potential plane. For a thin weir in an infinitely deep channel, the point 
E coincides with Z at - 00. For a channel of finite depth, E is on the axis between Z and 8, aa it 
is also for a broad-crested weir in a channel of infinite depth. 

J 

Z S 

FIQURE 3. The complex t-plane. For a thin weir in an infinitely deep channel, E coincides with I 
at t = -1. For a channel of finite depth E is on the diameter between Z and 8. The aame is true 
for a broad-crested weir in a channel of infinite depth. 

expansion inserted, (3.7) becomes 

5=-(t+1)[-Inc(l+t*)]texp 

The function (3.8) satisfies (3.3)-(3.5). The unknown real coefficients U,, have to be 
determined to make (3.8) satisfy the Bernoulli condition (3.2). 

We use the notation t = It1 eiu so that points on the free surfaces are given by t = eiu, 
0 < a -= m. Using (3.6) and the identity 

we obtain after some algebra 

_-  df 1 sing W) 

_-  dy" 1 sina v " ( 4  

-- 
d a  2n cosa cos*$r a(a)*+v"(a)*' 

-- 
d a  2n cos a cos2 $r . i i ( ~ ) ~  + v"(a)*' 

(3.9) 

(3.10) 

(3.11) 

Here &a) = 4(a) -iB(a) denotes the value of 6 at a point on a free surface. 
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FIGURE 4. Computed free-surface profile for the flow past a thin weir in an infinitely deep 
channel. The vertical scale is the same as the horizontal scale. 

The value of Z(u) on the free surface is obtained by integrating (3.10) : 

'(') d7, 0 < u < @, (3.12) 
(I 1 sin7 

2n cos 7 C O S 2 9  C(7)2+ '(7)2 

'(') d7, $n < u < n. 
(I 1 sin7 

Z ( a )  = 5, - 
2n cos 7 cos2 +T G(7)2 + ' ( 4 2  

(3.13) 

Here xs is the value of x at the separation point S. 
We solve for the U ,  numerically by truncating the infinite series in (3.8) after N 

terms. For convenience we choose N to be even. To get equations for the coefficients 
U ,  we use collocation. Thus we introduce the N mesh points 

n n  
g r = - + - ( I - l )  (I= 1, ..., N ) .  

2N N 

Using (3.8), (3.12) and (3.13) we obtain c(g1) and Z(Ur) in terms of the coefficients 
U,, and xs. Substituting these expressions into (3.2) at the point uI, we obtain N 
nonlinear algebraic equations for the N +  1 unknowns xs, U,, U2, ..., U,. Another 
equation is obtained by integrating ax/a$ along the equipotential4 = 0 from @ = 0 
to 1 and equating the value of x at $ = 1 to the corresponding value of $(a) obtained 
from (3.12). 

We solve this system by Newton's method. Once it is solved, we obtain the shape 
of the free surfaces in parametric form by integrating numerically (3.10) and (3.11). 
A typical profile obtained in this way is shown in figure 4. 

To determine the coefficient C(O), which occurs in (2.3), we calculate xs, the x 
coordinate of the separation point S. It follows from (2.3) and our choice of 
dimensionless variables that C(0)  is related to xs by 

C(0)  = X b .  (3.14) 
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FIGURE 5. Numerical values of C(0) versus 1/N obtained by the scheme of $3. 
The broken line corresponds to a linear extrapolation to N = Q). 

By using (3.14) and the calculated values of xs, we have computed C(0) for different 
numbers of mesh points N. Figure 5 is a graph of the values of C(0) versus 1/N. It 
indicates that C(0) vanes linearly with 1/N for N large. The broken line in figure 5 
represents a linear extrapolation to N = 00, which gives 

C(0) N 0.583. (3.15) 

The value of C'(0) will be obtained in the next section. 

4. Thin weir in channel of finite depth 
We now generalize the procedure of $3 to include the effect of finite depth, so that 

W + 00 (see figure la). The dimensionless potential plane is shown in figure 2. By 
using the transformation (3.6), we map the flow domain into the interior of the unit 
circle in the t-plane, so that the horizontal bottom and the vertical wall go respectively 
onto the portions IE and ES of the real diameter. The free surface goes onto the 
portion of the circumference lying in the upper half of the t-plane (see figure 3). 

We denote by -e, the value of t corresponding to the corner E. As t+-eo ,  the 
complex velocity vanishes like ( t+ e,)k Therefow we can solve the problem numer- 
ically by using the procedure outlined in 93 with the relation (3.7) replaced by 

(4.1) 

As in $3 we chose c = 0.2. 
We note that [+constant as t+- 1. Therefore our formulation requires that there 

be no waves on the free surface. It follows from the ch@e of the dimensionless 
variables that the Froude number F is related to the value [( - 1) of g at t = - 1 by 

(4.2) 
the relation 

The procedure of $3 yields N +  1 equations for the N +  2 unknown xs, e,, U,, . . . , U,. 
Another equation is obtained by using (4.2) where the Froude number F is specified. 
A typical profile, for F = 0.1, is shown in figure 6. The corresponding value of H/W 
is found to be 0.42. As F-tO we find that eo+- l  and the solutions approach the 
solution presented in 93. 

[ = - (t + e,)f [ - In c( 1 + t 2 ) $  ea(t). 

P = [[( - 1)]4. 
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FIGURE 6. Computed free-surface profile for the flow past a thin weir in a channel of finite 
depth for F = 0.1. The vertical scale is the same aa the horizontal scale. 
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FIGURE I. Values of F(H/  W)+ versus H/ W .  

In  order to check the formula (2.6) and to determine the coefficients C(0) and G ' ( O ) ,  
we plot P(H/  W ) i  versus H /  W in figure 7 for small values of H /  W. These values were 
obtained by using the extrapolation procedure of figure 5. The curve in figure 7 is 
very close to a straight line of slope -0.80 which intersects the vertical axis at 0.583. 
Therefore 

C(0) - 0.583, (4.3) 

C ' ( O ) - v ( O )  N -0.80. (4.4) 

The value of C(0) predicted by (4.3) agrees with the value obtained in $3, (3.15). From 
(4.3) and (4.4) we find 

C'(0) - 0.07. (4.5) 

Ackers et al. (1978, p. 57) present experimental values of C obtained by various 
investigators for H /  W = 0 and for H /  W = 1. As (2.2) shows, them are just the values 
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of C(0) and C(0) + C'(0) + . . . . From the values listed in their table 3.1 we find that 
the experimental values of C(0) and C'(0) are in the ranges 

(4.6) 

(4.7) 

0.564 Q C(0) Q 0.591, 

0.066 Q C'(0) Q 0.085. 

Our numerical results (4.3) and (4.5) are evidently within these experimental ranges. 

5. Broad-crested weir in water of infinite depth 
We shall now extend the procedures of 953 and 4 to obtain the flow past a 

broad-crested weir in water of infinite depth (see figure 8). We denote by L the 
dimensionless length of the weir and we write the flux Q in the form (2.1) with the 
discharge coefficient C,(H/L). The dimensionless potential plane and the complex 
t-plane are the same as in 54 (see figures 2 and 3). 

As t+-eo, the complex velocity g grows like (t+e,)-i. As t+- 1, f vanishes like 
t + 1. Therefore we replace (4.1 ) by 

= i[-hc(i  + t S ) ] t  ( t+  1) ( t+e,)f  (5.1) 

We then follow step by step the procedure of 54 with (4.2) replaced by an equation 
that expresses the fact that the distance between E and S is equal to L. This equation 
is found by integrating numerically the identity (3.9) along the streamline $ = 0 
between E and S. Then C, is found from (3.14). 

A typical profile for H / L  = 0.88 is shown in figure 8. A similar profile was found 
for H/L = 1.23. The corresponding values of the discharge coefficient are 

C,(0.88) = 0.583, 

C,(1.23) = 0.617. 

These results indicate that for broad-crested weirs, the discharge Q depends only on 
H and on the geometry of the weir and of the channel. 

6. Discussion 
The weir flows that we have found in 553-5 are subcritical free-surface flows 

without waves. The condition that there be no waves, which we imposed in our 
formulation, was essential in determining a particular solution. Therefore it is of 
interest to consider a case that can be treated exactly, and that leads to results of 
the form (2.2) and (2.6). 

We consider the flow in figure 9, which is bounded by one free streamline and two 
horizontal rigid walls. We assume that there are no waves and we integrate the 
2-component of the Euler equation of motion over the flow domain. Upon using the 
divergence theorem we obtain 

This line integral around the boundary of the flow domain can be evaluated as 
follows. First the normal velocity u, vanishes on the walls and on the free Streamline, 
while u,, = u, = U,  or U, on the vertical lines at z = +_ ao. Next we see that the 
2-component of the unit normal vanishes on the walls while ynzds = ydy can be 
integrated along the free streamline where p = 0. Finally p-'p+gy = g(H,--H,) at 
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FIGURE 8. Computed free-surface profile for the flow paat a broad-crested weir for L = 1.6. The 
vertical scale is the same aa the horizontal scale. 

FIGURE 9. Sketch of a two-dimensional flow emerging from beneath a flat plate 
above a horizontal bottom. 

z = + co and = g(H2 - H , )  + !j( q - q) at z = - GCI from the Bernoulli equation. Using 
all these facts in (6.1) we find 

Now we combine (6.2) with the mass conservation equation U, H, = U2 H2 to get 

(H, - H,)2 (gH,  - q) = 0. (6.3) 
Thus either H2 = H ,  or U2 = (gH,):. In  the second case we see that the flow velocity 
is determined by the flow geometry. Then the Froude number F = U2(gHJA and the 
flux Q = U2 H ,  are also determined by the flow geometry. To exhibit the similarity 
of the results to those for a weir we set H ,  = W and Hs = W + H .  Then we find 
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When H > 0 this flow is subcritical and without waves, just like the weir flows we 
have calculated. However for H < 0, the present flow is supercritical. For P = 2 
there is a stagnation point at 2 = y = 0 and the flow reduces to the configuration 
considered by Benjamin (1968). Vanden-Broeck (1980) has included waves in this 
problem for the particular case W = 00, and calculated their amplitude by using this 
method. 

In $4 we have found a unique subcritical flow for a thin weir of height W in a 
channel of finite depth H +  W. In addition to this flow, there is a family of supercritical 
flows over the same weir in a channel of the same depth. For example when F = co , 
i.e. when gravity is negligible, there is an explicit free-boundary solution given by 

(6.6) 

This solution can be used, together with the method of matched asymptotic 
expansions, to construct asymptotic expansions of solutions for F % 1. Presumably 
this family of solutions exists for all values of F greater than or equal to some critical 
value 4. 

Such asymptotic expansions were constructed for a waterfall, in which cam W = 0 
and e, = - 1 in (6.6), by Clarke (1965) and by Keller & Geer (1973). More recently 
Goh & Tuck (1986) computed numerical solutions for waterfall flows emerging from 
between horizontal plates, and Tuck (1987) calculated the waterfall from a horizontal 
slot in a vertical wall. In  all these cases the Froude number can be specified 
independently of the geometry. Finally we note that uniqueness theorems for weir 
flows are lacking. For flows under sluice gates some uniqueness results have been 
obtained by Budden & Norbury (1982). 

= - (t + e,)t ( te ,  + 11% 
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